
Monika Agarwal et al Int. Journal of Engineering Research and Applications               www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 1( Version 4), January 2014, pp.90-93 

 

 
www.ijera.com                                                                                                                                90 | P a g e  

 

 

 

Review of Matrix Decomposition Techniques for Signal 

Processing Applications 
 

Monika Agarwal*, Rajesh Mehra** 
*(Department of Electronics and communication, NITTTR, Chandigarh) 

** (Department of Electronics and communication, NITTTR, Chandigarh) 

 

ABSTRACT 

Decomposition of matrix is a vital part of many scientific and engineering applications. It is a technique    that 

breaks down a square numeric matrix into two different square matrices and is a basis for efficiently solving a 

system of equations, which in turn is the basis for inverting a matrix. An inverting matrix is a part of many 

important algorithms. Matrix factorizations have wide applications in numerical linear algebra, in solving linear 

systems, computing inertia, and rank estimation is an important consideration. This paper presents review of all 

the matrix decomposition techniques used in signal processing applications on the basis of their computational 

complexity, advantages and disadvantages. Various Decomposition techniques such as LU Decomposition, QR 

decomposition , Cholesky decomposition are discussed here.  
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I. INTRODUCTION 
Signal processing is an area of system 

engineering, electrical engineering and applied 

mathematics that deals with the operations on or 

analysis of analog as well as digitized signal, 

representing time varying or spatially physical 

quantities. There are various mathematical model 

applied in signal processing such as linear time 

invariant system, system identification, optimization, 

estimation theory, numerical methods [1].In the 

computational application matrix decomposition is a 

basic operation. “Matrix decomposition refers to the 

transformation of the given matrix into a given 

canonical form”. Matrix factorization is the process 

of producing the decomposition where the given 

matrix is transformed to right hand side product of 

canonical matrices [2]. Matrix decomposition is a 

fundamental theme in linear algebra and applied 

statistics which has both scientific and engineering 

significance. Computational convenience and 

analytic simplicity are the two main aspects in the 

purpose of matrix decomposition. In the real world it 

is not feasible for most of the matrix computation to 

be calculated in an optimal explicit way such as 

matrix inversion, matrix determinant, solving linear 

systems and least square fitting , thus to convert a 

difficult matrix computation problem into several 

easier task such as solving triangular or diagonal 

systems will greatly facilitate the calculations. Data 

matrices such as proximity matrix or correlation 

matrix represent numerical observations and it is 

often huge and hard to analyze them. Therefore to 

decompose the data matrices into some lower rank 

canonical forms will reveal the inherent 

characteristics. Since matrix computation algorithms 

are expensive computational tasks, hardware 

implementation of these algorithms require 

substantial time and effort. There is an increasing 

demand for domain specific tool for matrix 

computation algorithms which provide fast and 

highly efficient hardware production. In this paper 

there is review of matrix decomposition techniques 

that are used in signal processing. 

The paper is organized as follows: Section II 

discusses the Matrix decomposition Models. Section  

III concludes the paper 

 

II. MATRIX DECOMPOSITION 

MODELS 
This paper discusses basically four matrix 

decomposition models. 

QR decomposition 

SVD decomposition 

LU decomposition 

Cholesky Decomposition 

 

2.1 QR decomposition 

A matrix A=QR in linear algebra is a 

decomposition of a matrix A into an orthogonal and 

right triangular matrix. The Q-R decompositions are 

generally used to solve the linear least squares 

problems. If the matrix A is non-singular then the Q-

R factorization of A is a unique one if we want that 

the diagonal elements of R are positive. More 

generally we can factor a m x n rectangular matrix 

into an m x m unitary matrix and an m x n upper 

triangular matrix. There are two standard methods to 

evaluate Q-R factorization of A such as Graham-
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Schmidt triangulizations and Householder 

triangulizations but Householder triangulizations are 

much more efficient than Graham-Schmidt 

triangulizations because of the following statistics 

involved. The number of operations at the kth step 

are multiplications=2(n-k+1)2 , additions=(n-k+1)2 + 

(n-k+1) (n-k) + 2 , division=1and square root=1. 

Summing all these operations over (n-1) steps we get 

the complexity as O (n3) but this involves much less 

computation time than the other triangulation 

methods [3]. QR factorization is an important tool for 

solving linear systems of equations because of good 

error propagation properties and the inevitability of 

unitary matrices [4]. The main application of QR 

decomposition is solving the linear least squares 

problem. There exist systems of linear equations that 

have no exact solutions. Linear least square is a 

mathematical optimization technique used to find an 

approximate solution for these systems. QR 

decomposition has several advantages that it finds 

least squares solution as well when no exact solution 

exists, and if there is exact solution, it finds all.  

 

2.2 SVD DECOMPOSITION 

This is also one of the matrix decomposition 

schemes. This is also applicable for complex 

rectangular matrices of the dimensions m x n. The 

singular value decomposition block factors the M-by-

N input matrix A such that [4] 

A=U×diag(s)× V*          (1) 

Where U is an M-by-P matrix, V is an N-by-P 

matrix, S is a length-P , vector P is defined as 

min(M,N) When M = N, U and V are both M-by-M 

unitary matrices M > N, V is an N-by-N unitary 

matrix, and U is an M-by-N matrix whose columns 

are the first N columns of a unitary matrix N > M, U 

is an M-by-M unitary matrix, and V is an N-by-M 

matrix whose columns are the first M columns of a 

unitary matrix In all cases, S is a 1-D vector of 

positive singular values having length P. Length-N 

row inputs are treated as length-N columns. Note that 

the first (maximum) element of output S is equal to 

the 2-norm of the matrix A. The output is always 

sampling based [4]. 

 

2.3 LU DECOMPOSITION 

LU decomposition is widely used matrix 

factorization algorithm. it transforms square matrix 

into lower triangular matrix L and upper matrix U 

with A=LU. LU decomposition used the Dolittle 

algorithm for the elimination column by column from 

left to right. It results in unit lower triangular matrix 

that can use the storage of the original matrix A [5]. 

This algorithm requires 2n3/3 floating point 

operations.  Algorithm 1 shows the steps followed for 

LU decomposition of a matrix. In each iteration , the 

same steps are applied to a matrix that has one less 

row and column than in the previous iteration. This 

algorithms shows the parallelism of each steps while 

in each iteration, a new sub matrix is constructed and 

hence efficient use of local storage capacity. It would 

be preferable to use an algorithm to load a block of 

data into local storage performs the computation and 

then transfer new block. The block LU 

decomposition algorithm partitioned the entire matrix 

into smaller blocks so that work can be done 

concurrently to improve the performance. 

 

Input:A- n x n matrix with elemnts  a i,p 

Output: L, U triangular matrices with elements l i p,  

 u i p 

1: for p=1 : n 

2.     for q=1 to p-1 

3.        for i=q+1 to p-1 

4. A[i,p]=A[i,p]- A[i, q]× A[q,p] 

5.        for q=1to p-1  

6.        for i=p to n    

7.  A(i,p) = A[i,p]- A[i, q]× A[q,p] 

8.        for q= p+1:n 

9. A(q,p)=A(q,p)/A(p,p) 

 

Algorithm 1.Basic LU decomposition  

The algorithm is analyzed as it writes lower 

and upper triangular matrices onto A matrices then it 

updates the value of A matrix column by column ((4) 

and (7)). The final values are computed by the 

division of each column entry by the diagonal entry 

of that column. The LU decomposition has various 

advantages. it is applicable for any matrix. It can be 

solved by forward substitution as well as backward 

substitution. The solution of triangular set of equation 

is trivial to solve. it is direct method and finds all 

solution. LU decomposition is easy to program. 

There are several drawbacks that it doesn’t find 

approximate solution (least square). It could easily be 

unstable. Hence to find the approximate solution 

Cholesky decomposition is studied. 

 

2.4 CHOLESKY DECOMPOSITION 

The Cholesky decomposition factors a 

positive symmetric matrix to the product of a lower 

triangular matrix and its transpose, of which two 

general ways are given by: 

A = U
T
U                                                  (2) 

A = LDL
T
                                     (3) 

Where A is a positive definite symmetric matrix. U is 

the upper triangular matrix & UT is Transpose of 

upper triangular matrix, L is the unit lower triangular 

matrix & LT is lower triangular matrix and D is the 

diagonal matrix in which all elements are zeros 

except the diagonal elements. Cholesky 

decomposition has 1/3N3 FLOPS complexity with 

heavy inner data dependency. Introducing a diagonal 

matrix as shown in Eq. (3) in Cholesky 
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decomposition has many advantages, such as 

avoiding square roots and alleviating data 

dependency [5]. In this paper, we design and 

implement the UTU Cholesky decomposition in Eq. 

(2) on FPGAs for computation acceleration. Using 

the fact that A is symmetric [6]: 

A= LDL
T
 

Where L is lower triangular matrix. 

              (4) 

With Cholesky decompositions, the elements of L are 

evaluated as follows: 

                      (5) 

Where k=1, 2 ….n. 

                          (6) 

Where i=1, 2…..k-1. 

First subscript is row index and second one 

is column index. Cholesky decomposition is 

evaluated column by column and in each row the 

elements are evaluated from top to bottom. That is, in 

each column the diagonal element is evaluated first 

using equation (4) (the elements above the diagonal 

are zero) and then the other elements in the same row 

are evaluated next using equation (5). This is carried 

out for each column starting from the first one. Note 

that if the value within the square root in equation (4) 

is negative, Cholesky decomposition will fail. 

However, this will not happen for positive semi 

definite matrices, which are encountered commonly 

in many engineering systems (e.g., circuits, 

covariance matrix). Thus, Cholesky decomposition is 

a good way to test for the positive semi definiteness 

of symmetric matrices. A general form of the 

Cholesky algorithm is given in Algorithm 2, where 

the row-order representation is assumed for stored 

matrices. In the above algorithm, if one changes the 

order of the three for loops, one can get different 

variations which give different behavior in terms of 

memory access patterns and the basic linear 

Algebraic operation performed in the innermost loop. 

Out of the six different variations possible, only three 

are of interest. They are the row-oriented, column-

oriented and sub matrixes forms and are described as: 

In Row-oriented L is calculated row by row, with 

the terms for each row being calculated using terms 

on the preceding rows that have already been 

evaluated,  Column-oriented, the inner loop 

computes a matrix-vector product. Here, each column 

is calculated using terms from previously computed 

columns. And Sub-matrix the inner loops apply the 

current column as a rank-1 update to the partially 

reduced sub-matrix.The algorithm is analyzed as the 

decomposition by transferring the matrix A into 

memory elements. The diagonal entire of lower 

triangular matrix, A, are square root of diagonal 

entries of given matrix (8). It calculate the entries by 

dividing the corresponding element of given matrix 

by the belonging column diagonal element (9) .The 

algorithm works column by column and after the 

computation of first column of diagonal matrix with 

the given matrix entries, the elements in the next 

column are updated (4). 

 

1. For p = 1to n 

2. For q=1 to j-1 

3.  For i = p to n 

4. A[i,p] = A[i,q] – A[i,q] * A[p,q] 

5  End 

6 End 

7 A[p,p] = √ A[p,p] 

8 For q = p+1 to n 

9  A[q,p]= A[q,p] / A[p,p] 

10 End 

11    End 

 

Algorithm 2: General form of the Cholesky 

algorithm. 

 

In this paper, the Cholesky factorization 

method has several advantages over the other 

decomposition techniques. It has faster execution 

because only one factor needs to be calculated as the 

other factor is simply the transpose of the first one. 

Thus, the number of operations for dense matrices is 

approximately n3/3 under Cholesky. It is highly 

adaptive to parallel architectures hence pivoting is 

not required. This makes the Cholesky algorithm 

especially suitable for parallel architectures as it 

reduces inter-processor communications. A lot of 

work [8] has been devoted to parallelizing the 

Cholesky factorization method. it has significantly 

lower memory requirements. In the Cholesky 

algorithm, only the lower triangular matrix is used for 

factorization, and the intermediate and final results 

(the Cholesky factor L) are overwritten in the original 

matrix. Thus, only the lower triangular matrix must 

be stored, resulting in significant savings in terms of 

memory requirements. it eliminates the divider 

operation dependency. It improves the data 

throughput. 

 

III. CONCLUSIONS 
The proposed paper review all the matrix 

decomposition techniques used in signal processing 

applications. QR decomposition has complicated 

algorithm and also a slower algorithm. LU 

decomposition doesn’t find approximate solution and 

have stability issues. Cholesky decomposition can 

find approximate solution of the problem. Among all 

the matrix decomposition techniques Cholesky 
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Decomposition is the well suited for signal 

processing application. It is efficient in terms of 

memory storage capacity, computational cost, speed, 

data alleviating and throughput. 
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